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Phosphorus-31 and mercury-l 99 NMR measure- 
ments are reported for a series of mercury(H) 
complexes HgX2JP(c-C6H11)s J[PBt+ J (where X = 
03SCF3, Clod, NO,, CF, COO, CH, COO, Cl, Br, I, 
SCN, CN) in dichloromethane solution. The two 
bond coupling ‘J(P’-P) of these asymmetric com- 
plexes decrease with increasing coordination ability 
of the anion and range between 198 Hz and 8.5 Hz. 

Data are also presented for Hgf03SCF3 12/P(c- 
C~HU)SJZ, fk~WCFdW%J, h = 2 3, 4) 
which imply that the perchlorate anion may be more 
strongly involved in coordination to mercury, in solu- 
tion, than the trifluoromethylsulphonate anion. 

Introduction 

Phosphorus-3 1 and mercury-199 NMR measure- 
ments have been widely used to study phosphine 
complexes of mercury(H) in solution [l-7] . These 
studies have shown that one bond mercury-phos- 
phorus couplings, ‘J(Hg-P), and mercury-199 chem- 
ical shifts, 6(199Hg) are sensitive to structural changes 
about mercury caused by variation of the number of 
coordinated phosphines and by involvement of anions 

in coordination to mercury. Recently, a correlation 
between NMR coupling constants and molecular 
structure has been established for complexes HgX2- 
(pPh3)= (X = NOB, Cl, Br, SCN, I and CN) and 
shows that ‘J(Hg-P) values are primarily influenced 
by the P-Hf--P angle, larger angles being associated 
with larger J(Hg-P) values [8, 91. More recently, 
phosphorus-3 1 and mercury-199 NMR measurements 
of cationic mercury(I1) phosphite complexes contain- 
ing two different phosphite molecules have been 
reported [lo] . 

Few values for two bond phosphorus-phosphorus 
coupling through a metal atom have been reported 
[lo-121 although such couplings should also reflect 
the nature of the phosphorus-metal bond as well 
as- the geometry about the metal atom. Phosphorus- 
31 and mercury-199 NMR parameters for a series 
of mixed-phosphine adducts HgX2 [P(&j HI&] - 
[PBu,] (where X = 0sSCF3, C104, NO3, CFsCOO, 
CH3CO0, Cl, Br, I, SCN, CN) and for Hg(O$CF&- 

[P(C’C6H11)312 and Hg(03SCF3)2PBu31, (n = 2, 

3, 4) are now reported. Tricyclohexylphosphine 
and tributylphosphine were used in this study 
because of their similar base strengths [ 131 and 
because they form complexes sufficiently soluble 
in dichloromethane for NMR measurements. 

TABLE I. NMR Parameters for P(cC6H11)3 and PBu3 Adducts with Hg(OsSCF& and Hg(C104)2. 

Compound ‘J(Hg-P) 
(Hz) 

s(‘99&1 
(ppm) 

Temperature 
ec, 

75.8 4087 494 30 

78.3 3730 365 30 

45.4 4815 365 30 

29.3 3144 1075 -60 

5.0 1990 1137 -80 

49.8 4280 290 30 

30.6 3050 1080 -70 

4.8 1980 1130 -70 

aData from ref. 1. 
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TABLE II. NMR Parameters for HgXzP’P (P’ =P(c-CgHn)s,P = PBus] in Dichloromethane Solution. 

X 

O3 SCF3 

Cl04 
NO3 

CF3CO0 
CH3CO0 
Cl 

Br 
I 
SCN 
CN 

6 (3’P) 
@pm) 

P’ 

12.54 

72.22 
66.36 
62.39 
58.90 
56.72 

51.33 
40.57 
61.26 
41.85 

P 

49.65 

52.50 
44.53 
37.89 
30.71 
29.18 

23.20 
8.42 

30.31 
2.54 

2J(P’-P) J(Hg-P’) J(Hg-P) s(‘99H8) Temperature 
(Hz) (Hz) (Hz) @pm) CC) 

198 4230 4595 413 30 
191 3860 4220 376 -80 
190 4755 5170 454 -85 
181 4945 5260 667 -70 
176 5100 5600 750 -80 
156 4960 4940 1055 -100 
147 4750 4660 1001 -100 
125 4280 4060 895 -105 
138 4350 4205 1130 -70 
85 3730 3110 1135 -105 

Results and Discussion 

Dichloromethane solutions containing 1: 1 
stoichiometries of [Hg(DMSO),] (osSCFs)2 and 
either tricyclohexylphosphine, P(c-C6 HI1 h , or tri- 
butylphosphine, PBu3, have phosphorus-3 1 and mer- 
cury-199 NMR spectra consistent with the formation 
of 1:2 adducts and unreacted [Hg(DMSO)6](03- 
SCF3)2. This result is in contrast to the reaction of 
tertiary phosphites with [Hg(DMSO)6] (O3SCF3)2 
where I:1 adducts were observed [lo]. The I:2 
adduct Hg(03SCF3)2 [P(c-C~H~~)~] 2 does not 
react further with tricyclohexylphosphine in solu- 
tion however Hg(O$CF& [PBu,] 2 does react 
further with tributylphosphine to product 1:3 and 
I:4 adducts in solution at low temperature. NMR 
data for these adducts are presented in Table I. 

A comparison of the NMR parameters for Hg(03- 

SCF3)2 EP@-C6H11)312 and %@&F&PW2 
with those for the perchlorate analogues Hg(C104)2- 
[P(c-CgH11)3 3 2 and Hg(C104)2 [PBu3] 2 imply signi- 
ficant differences in the degree of coordination of 
the two anions Clod- and 03SCF3- in dichloro- 
methane solution. Whilst the ‘J(Hg-P) values increase 
for both phosphine complexes in going from per- 
chlorate to trifluoromethylsulphonate and im ly 
stronger mercury-phosphine bonding, the P S(3 P) 
chemical shifts on the other hand move to lower 
frequency and imply more weakly coordinated phos- 
phine molecules. Furthermore the S(199Hg) chem- 
ical shifts for the trifluoromethylsulphonate deriva- 
tives are at higher frequency than for the perchlorate 
containing compounds and implies greater electron 
density at mercury for the trifluoromethylsulpho- 
nate derivatives. It has previously been reported [8, 
91 that ‘J(Hg-P) values for phosphine complexes 
of mercury(H) are largely determined by the P-Hg-P 
angle. The solid state structure for Hg(C104)2- 

[P(c-CgH11)3]2 [16] shows weakly bonded per- 
chlorate groups which presumably cause the devia- 
tion of P-Hg-P angle from linearity (observed 
P-Hg-P angle is 170.7”). It may be that these 
weak interactions between perchlorate and mercury 
persist to some extent in solution. Probably in solu- 
tion the interaction between the trifluoromethyl- 
sulphonate anion and mercury are weaker thus lead- 
ing to a larger P-Hg-P angle. 

Further support for the dominant effect of 
P-Hg-P angle on ‘J(Hg-P) coupling values is given 
by a comparison of the NMR parameters for Hg- 

(Cl042 [p(c-C6 HII h 12 and Hg(CH3C00)2 [P(c-C6- 

H11)3]2 with the solid state structures for these 
two compounds [ 161. Although the acetate groups 
are more strongly bound to mercury than the per- 
chlorate groups, the mercury-phosphorus distances 
are virtually identical for both compounds. The most 
obvious difference in the solid state appears in the 
P-Hg-P angle, 153” for Hg(CH3C00)2 [P(c-C6- 
H11)3] 2 and 170.7’ for Hg(C104)2 [P(c-C6 H,1)3 ] 2. 
Presumably similar differences in P-Hg-P angles 
also exist in solution and give rise to the quite dif- 
ferent NMR parameters (‘J(Hg-P) 3730, 6(‘99Hg) 
420, S(3’P) 78.3 for Hg(C104)2[P(c-C6H11)3]2; 
‘J(Hg-P) 5240, 6(‘99Hg) 665, S(31P) 53.5 for Hg- 

(CH3CoO)2[P(c-C6H,,)3]2) [I]. 
The differences between perchlorate and trifluoro- 

methylsulphonate are less obvious in the NMR data 
(Table I) for 1:3 and I:4 adducts, HgX2 [PBu3]s 
and HgX2[PBu314 (X = Clod, 03SCF3). In these 
cases it appears that both perchlorate and trifluoro- 
methylsulphonate are totally uninvolved, in solution, 
in coordination to mercury. 

The phosphorus-3 1 and mercury-199 spectra of 
dichloromethane solutions containing equimolar 
quantities of HgX2, P(c-C~H,,)~ and PBu3 (X = 
Cl, Br, I, SCN, CN) show HgX2[P(c-C6H11)3]2, 
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HgXz [PBu3] a and HgXz [P(c-C, Hrr )3] [PBu3] in 
approximate statistical distributions. Similar distri- 
butions were observed in solutions containing equi- 
molar quantities of HgXz [P(c-C, Hii )3] a and HgX2- 
[PBu3]a (X = N03, CH,COO, CF,COO). A solution 
containing equimolar quantities of Hg(C104)a [P(c- 

C5W312 and Hg(C104)a [PBu3]a does not yield 
mixed-phosphine species unless a small amount (1 
drop) of PBua has been added. The addition of a 
slight excess of PBu3 is necessary to induce phos- 
phine exchange at mercury via the formation of 
a small amount of Hg(C104)a [PBu,] 3. The mixture 
involving Hg(03SCF3)a [P(c-C, Hrr )3] [PBu3] was 
formed by mixing equimolar quantities of [Hg- 
(DMSO),] (03SCF3)a [ 141, P(c-C~H~~)~ and PBu3. 
With the exception of the mixture involving the 
trifluoromethylsulphonate anion, cooling is requir- 
ed to slow phosphine exchange sufficiently to observe 
mercury-l 99 satellites in the phosphorus-3 1 spec- 
tra. 

The phosphorus-31 spectrum of each of the mix- 
tures studied comprises two singlets (each with 
mercury-199 satellites) identified as due to HgX2- 
[P(c-C, Hi1 )3] 2 and HgXa [PBu3] 2 as well as an ABX 
spectrum due to the mixed-phosphine species HgX2- 
[P(c-C, Hi1 )3] [PBu,] . The corresponding mercury- 
199 spectra each contain two triplets due to HgX2- 

[PWc&)312 and HgXz [PBu312 as well as a 
doublet of doublets arising from the HgX2[P(c-Ce- 
H11)3] [PBu3] species. Analysis of these spectra give 
the results presented in Table II. 

The phosphorus-31 chemical shift of P(c-CeHrr)s 
is at higher frequency for Hg(OaSCFs)a [P(c-C,- 
H11)3] [PBu3] than for Hg(OaSCFa)a [PBua]z whilst 
rJ(Hg-P) is smaller for Hg(03SCF3)? [P(c-C, Hrr )a] - 
[PBu3] than for Hg(03SCF3)2 [PBu3] *. The opposite 
is true when comparing Hg(OsSCFa)a [P(cG,Hrr>3] - 
[PBu,] with Hg(03SCF3)a [P(c-C~H~~)~]~ and these 
results are consistent with a larger mzns-influence 
of P(c-CgH& in these, presumably, approximately 
linear complexes. A similar observation is made 
from the data for the compounds with X = Clod. 

The data in Table II show that the mercury-199 
chemical shifts move to higher frequency with 
increasing donor ability of the anion, X. These 
shifts are accompanied by decreases in ‘J(Hg-P’) 
values and are consistent with earlier reports [8, 91 
correlating decreasing one bond mercury-phosphorus 
coupling with decreasing P-Hg-P angles. This 
correlation also appears to hold true for two bond 

couplings ‘J(P-P’) which also decrease as the donor 
ability of the anion increases. The ‘J(P-P’) values 
cover the narrow range 198 Hz to 83 Hz and are 
significantly smaller than those determined for 
[HgP(OMe3)P(OEt3)3]2’ (567 Hz) [IO] and 

b#WWM 2 (700 Hz) 1151. 

Experimental 

All NMR spectra were recorded on a JEOL FXlOO 
spectrometer, phosphorus-3 1 at 40.26 MHz and mer- 
cury-199 at 17.82 MHz using external ‘Li lock. 
Phosphorus-3 1 spectra were referenced against 
external 85% H3P04 and mercury-199 against 
external 1 M phenylmercury acetate in DMSO. 

Preparation of phosphine complexes of mercury 
was as previously described [ 1, 21 . 
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